NEWLY ONSET OF THYROTOXICOSIS IN A PATIENT TREATED WITH ANAKINRA FOR GLUCOCORTICOIDS-DEPENDENT AND COLCHICINE-RESISTANT RECURRENT PERICARDITIS
Abstract
Anakinra, a recombinant, but slightly modified version of the non-glycosylated form of human interleukin-1 receptor antagonist, has been used for various conditions, including the most recent indication, namely, some forms of sever coronavirus infection. Despite a large area of immune and autoimmune interferences and side effects, no specific endocrine issue has been highlighted yet. Here, we report a young female who was prior confirmed with a history of recurrent liquid pericarditis that turned out to be resistant to glucocorticoids and colchicine, thus Anakinra was initiated and showed good clinical results. However, the patient started to experience a mild, but suggestive, clinical picture of thyrotoxicosis which was confirmed by the lab findings. Despite negative thyroid antibodies, the subject did not undergo medication with anti-thyroid medication, only with beta-blockers, and showed a progressive clinical remission within a few weeks. Also, a correction of the thyroid function was observed followed by a spontaneous switch to primary hypothyroidism in addition to a mild elevation of the serum anti-thyroperoxidase antibodies, consistent with the diagnosis of an autoimmune thyroid disease. Whether prior glucocorticoids exposure had a negative impact of the level of antibodies against thyroid or Anakinra was responsible for de novo induction of these mentioned thyroid anomalies is yet to be proven. Moreover, it is still a matter of debate the role played by the positive family history with respect to the same autoimmune thyroid condition that might raise the issue of a selective group of Anakinra candidates that are prone to develop thyroid consequences. Further clinical and pathogenic studies are necessary on this particular novel insight.
References
[2] N. Specchio, N. Pietrafusa, "New-onset refractory status epilepticus and febrile infection-related epilepsy syndrome," Dev Med Child Neurol., vol. 62, no. 8, pp. 897-905, 2020, doi:10.1111/dmcn.14553.
[3] A. C. Lennard, "Interleukin-1 Receptor Antagonist," Crit Rev Immunol., vol. 37, no. 2-6, pp. 531-559, 2017, doi:10.1615/CritRevImmunol.v37.i2-6.160.
[4] Z. Adam, A. Šedivá, D. Zeman, Z. Fojtík, H. Petrášová, J. Diatková, M. Tomíška, Z. Král, J. Treglerová, V. Peřina, K. Kamaradová, Z. Adamová, L. Pour, "Successful treatment of SAPHO syndrome (chronic nonbacterial osteomyelitis and acne) with anakinra and denosumab. Case report and review of therapy," Vnitr Lek., vol. 69, no. E-5, pp. 4-14, Summer 2023, doi:10.36290/vnl.2023.065.
[5] L. Radu, M. Carsote, A. A. Gheorghisan-Galateanu, S. A. Preda, V. Calborean, R. Stanescu, V. Gheorman, D. M. Albulescu, "Blood Parathyrin and Mineral Metabolism Dynamics. A clinical analyzes," Rev. Chim., vol. 69, no. 10, pp. 2754-8, 2018.
[6] E. C. Rodriguez-Merchan, "The Current Role of Disease-modifying Osteoarthritis Drugs," Arch Bone Jt Surg., vol. 11, no. 1, pp. 11-22, 2023, doi:10.22038/ABJS.2021.56530.2807.
[7] M. Popescu, A. Ghemigian, C. M. Vasile, A. Costache, M. Carsote, A. E. Ghenea, "The new entity of subacute thyroiditis amid the COVID-19 pandemic: from infection to vaccine," Diagnostics (Basel), vol. 12, no. 4, p. 960, 2022, doi:10.3390/diagnostics12040960.
[8] F. Sandru, M. Carsote, R. C. Petca, A. A. Gheorghisan-Galateanu, A. Petca, A. Valea, M. C. Dumitrascu, "COVID-19-related thyroid conditions (Review)," Exp Ther Med., vol. 22, no. 1, p. 276, 2021, doi:10.3892/etm.2021.10188.
[9] T. Koritala, V. Pattan, R. Tirupathi, A. A. Rabaan, A. Al Mutair, S. Alhumaid, R. Adhikari, K. Deepika, N. K. Jain, V. Bansal, A. Tekin, S. Zec, A. Lal, S. A. Khan, J. P. D. Garces, O. M. Abu Saleh, S. R. Surani, R. Kashyap, "Infection risk with the use of interleukin inhibitors in hospitalized patients with COVID-19: A narrative review," Infez Med., vol. 29, no. 4, pp. 495-503, 2021, doi:10.53854/liim-2904-1.
[10] M. Kawazoe, M. Kihara, T. Nanki, "Antirheumatic Drugs against COVID-19 from the Perspective of Rheumatologists," Pharmaceuticals (Basel), vol. 14, no. 12, p. 1256, 2021, doi:10.3390/ph14121256.
[11] K. G. Kyriakoulis, A. Kollias, G. Poulakou, I. G. Kyriakoulis, I. P. Trontzas, A. Charpidou, K. Syrigos, "The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis," J Clin Med., vol. 10, no. 19, p. 4462, 2021, doi:10.3390/jcm10194462.
[12] Y. Wang, K. Zhu, R. Dai, R. Li, M. Li, X. Lv, Q. Yu, "Specific Interleukin-1 Inhibitors, Specific Interleukin-6 Inhibitors, and GM-CSF Blockades for COVID-19 (at the Edge of Sepsis): A Systematic Review," Front Pharmacol., vol. 12, p. 804250, 2022, doi:10.3389/fphar.2021.804250.
[13] J. Peng, M. Fu, H. Mei, H. Zheng, G. Liang, X. She, Q. Wang, W. Liu, "Efficacy and secondary infection risk of tocilizumab, sarilumab and anakinra in COVID-19 patients: A systematic review and meta-analysis," Rev Med Virol., vol. 32, no. 3, p. e2295, 2022, doi:10.1002/rmv.2295.
[14] A. García-Lledó, J. Gómez-Pavón, J. González Del Castillo, T. Hernández-Sampelayo, M. C. Martín-Delgado, F. J. Martín Sánchez, M. Martínez-Sellés, J. M. Molero García, S. Moreno Guillén, F. J. Rodríguez-Artalejo, J. Ruiz-Galiana, R. Cantón, P. De Lucas Ramos, A. García-Botella, E. Bouza, "Pharmacological treatment of COVID-19: an opinion paper," Rev Esp Quimioter., vol. 35, no. 2, pp. 115-130, 2022, doi:10.37201/req/158.2021.
[15] M. Soy, G. Keser, P. Atagündüz, "Pathogenesis and treatment of cytokine storm in COVID-19," Turk J Biol., vol. 45, no. 4, pp. 372-389, 2021, doi:10.3906/biy-2105-37.
[16] E. Kyriazopoulou, T. Huet, G. Cavalli, A. Gori, M. Kyprianou, P. Pickkers, J. Eugen-Olsen, M. Clerici, F. Veas, G. Chatellier, G. Kaplanski, M. Netea, E. Pontali, M. Gattorno, R. Cauchois, E. Kooistra, M. Kox, A. Bandera, H. Beaussier, D. Mangioni, L. Dagna, J. W. M. van der Meer, E. J. Giamarellos-Bourboulis, G. Hayem; International Collaborative Group for Anakinra in COVID-19, "Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis," Lancet Rheumatol., vol. 3, no. 10, pp. e690-e697, 2021, doi:10.1016/S2665-9913(21)00216-2.
[17] M. K. R. Somagutta, M. K. Lourdes Pormento, P. Hamid, A. Hamdan, M. A. Khan, R. Desir, R. Vijayan, S. Shirke, R. Jeyakumar, Z. Dogar, S. S. Makkar, P. Guntipalli, N. N. Ngardig, M. S. Nagineni, T. Paul, E. Luvsannyam, C. Riddick, M. A. Sanchez-Gonzalez, "The Safety and Efficacy of Anakinra, an Interleukin-1 Antagonist in Severe Cases of COVID-19: A Systematic Review and Meta-Analysis," Infect Chemother., vol. 53, no. 2, pp. 221-237, 2021, doi:10.3947/ic.2021.0016.
[18] M. Davidson, S. Menon, A. Chaimani, T. Evrenoglou, L. Ghosn, C. Graña, N. Henschke, E. Cogo, G. Villanueva, G. Ferrand, C. Riveros, H. Bonnet, P. Kapp, C. Moran, D. Devane, J. J. Meerpohl, G. Rada, A. Hróbjartsson, G. Grasselli, D. Tovey, P. Ravaud, I. Boutron, "Interleukin-1 blocking agents for treating COVID-19," Cochrane Database Syst Rev., vol. 1, no. 1, p. CD015308, 2022, doi:10.1002/14651858.CD015308.
[19] M. Imazio, "Clinical Trials in Pericardial Disease: New Paradigm Shift," Curr Cardiol Rep., vol. 23, no. 11, p. 170, 2021, doi:10.1007/s11886-021-01587-z.
[20] S. Ugurlu, B. Ergezen, B. H. Egeli, O. Selvi, H. Ozdogan, "Anakinra treatment in patients with familial Mediterranean fever: a single-centre experience," Rheumatology (Oxford), vol. 60, no. 5, pp. 2327-2332, 2021, doi:10.1093/rheumatology/keaa596.
[21] M. Imazio, A. Battaglia, L. Gaido, F. Gaita, "Recurrent pericarditis," Rev Med Interne, vol. 38, no. 5, pp. 307-311, 2017, doi:10.1016/j.revmed.2016.12.006.
[22] M. Imazio, F. Gaita, "Acute and Recurrent Pericarditis," Cardiol Clin., vol. 35, no. 4, pp. 505-513, 2017, doi:10.1016/j.ccl.2017.07.004.
[23] M. Imazio, G. Lazaros, A. Brucato, F. Gaita, "Recurrent pericarditis: new and emerging therapeutic options," Nat Rev Cardiol., vol. 13, no. 2, pp. 99-105, 2016, doi:10.1038/nrcardio.2015.115.
[24] J. C. Alvarez-Payares, J. D. Bello-Simanca, E. J. De La Peña-Arrieta, J. E. Agamez-Gomez, J. E. Garcia-Rueda, A. Rodriguez-Arrieta, L. A. Rodriguez-Arrieta, "Common Pitfalls in the Interpretation of Endocrine Tests," Front Endocrinol (Lausanne), vol. 12, p. 727628, 2021, doi:10.3389/fendo.2021.727628.
[25] R. A. Haddad, D. Giacherio, A. L. Barkan, "Interpretation of common endocrine laboratory tests: technical pitfalls, their mechanisms and practical considerations," Clin Diabetes Endocrinol., vol. 5, p. 12, 2019, doi:10.1186/s40842-019-0086-7.
[26] Y. D. Miao, W. X. Quan, X. L. Tang, W. W. Shi, Q. Li, R. J. Li, J. T. Wang, J. Gan, X. Dong, L. Hao, W. Y. Luan, F. Zhang, "Uncovering the flip side of immune checkpoint inhibitors: a comprehensive review of immune-related adverse events and predictive biomarkers," Int J Biol Sci., vol. 20, no. 2, pp. 621-642, 2024, doi:10.7150/ijbs.89376.
[27] A. Basek, G. K. Jakubiak, G. Cieślar, A. Stanek, "Life-Threatening Endocrinological Immune-Related Adverse Events of Immune Checkpoint Inhibitor Therapy," Cancers (Basel), vol. 15, no. 24, p. 5786, 2023, doi:10.3390/cancers15245786.
[28] M. Bianchini, G. Puliani, A. Chiefari, M. Mormando, R. Lauretta, M. Appetecchia, "Metabolic and Endocrine Toxicities of Mitotane: A Systematic Review," Cancers (Basel), vol. 13, no. 19, p. 5001, 2021, doi:10.3390/cancers13195001.
[29] A. Ntchana, S. Shrestha, M. Pippin, "Cardiovascular Complications of COVID-19: A Scoping Review of Evidence," Cureus, vol. 15, no. 11, p. e48275, 2023, doi:10.7759/cureus.48275.
[30] M. Zuin, M. Imazio, G. Rigatelli, G. Pasquetto, C. Bilato, "Risk of incident pericarditis after coronavirus disease 2019 recovery: a systematic review and meta-analysis," J Cardiovasc Med (Hagerstown), vol. 24, no. 11, pp. 822-828, 2023, doi:10.2459/JCM.0000000000001536.
[31] S. Baskar, A. L. Klein, A. Zeft, "The Use of IL-1 Receptor Antagonist (Anakinra) in Idiopathic Recurrent Pericarditis: A Narrative Review," Cardiol Res Pract., vol. 2016, 2016, p. 7840724, doi:10.1155/2016/7840724.
[32] T. Welzel, J. B. Kuemmerle-Deschner, "Diagnosis and Management of the Cryopyrin-Associated Periodic Syndromes (CAPS): What Do We Know Today?" J Clin Med., vol. 10, no. 1, p. 128, 2021, doi:10.3390/jcm10010128.
[33] D. Symmank, C. Borst, M. Drach, W. Weninger, "Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases," JID Innov., vol. 3, no. 2, p. 100176, 2022, doi:10.1016/j.xjidi.2022.100176.
[34] Q. Y. Zhang, X. P. Ye, Z. Zhou, C. F. Zhu, R. Li, Y. Fang, R. J. Zhang, L. Li, W. Liu, Z. Wang, S. Y. Song, S. Y. Lu, S. X. Zhao, J. N. Lin, H. D. Song, "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto's thyroiditis," Nat Commun., vol. 13, no. 1, p. 775, 2022, doi:10.1038/s41467-022-28120-2.
[35] Q. Li, B. Wang, K. Mu, J. A. Zhang, "The pathogenesis of thyroid autoimmune diseases: New T lymphocytes - Cytokines circuits beyond the Th1-Th2 paradigm," J Cell Physiol., vol. 234, no. 3, pp. 2204-2216, 2019, doi:10.1002/jcp.27180.